9 research outputs found

    Development of the Advancing the Patient Experience (APEX) in COPD Registry : A Modified Delphi Study

    Get PDF
    Funding statement: APEX COPD is conducted by Optimum Patient Care (OPC) Global Limited, and co-funded by OPC Global and Boehringer Ingelheim Pharmaceuticals, Inc. (BIPI). The author(s) meet criteria for authorship as recommended by the International Committee of Medical Journal Editors (ICMJE). The authors received no direct compensation related to the development of the manuscript. Writing, editorial support, and/or formatting assistance was provided by Ms. Audrey Ang of the Observational and Pragmatic Research Institute, Singapore, and Dr. Lisa Buttle of Medscript Ltd, Ireland, which was funded by BIPI. BIPI was given the opportunity to review the manuscript for medical and scientific accuracy as well as intellectual property considerations. Acknowledgments The author(s) meet criteria for authorship as recommended by the International Committee of Medical Journal Editors (ICMJE). We thank Dr. Alvaro Aranda (Hospital Auxilio Mutuo, San Juan, Puerto Rico) for his scientific and clinical contributions during the drafting of this manuscript. We also thank Ms. Audrey Ang for editorial assistance, Ms. Bronte Sawyer for project coordination, and Dr. Lisa Buttle for assistance with drafting the article. Dr. Ruth B. Murray is acknowledged for her substantial contribution to the interpretation, summarization and presentation of data in this article and significant intellectual input to the manuscript. She has provided her final approval of the version to be published and agreed to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved. Dr. Ruth B. Murray is the founder and director of Medscript Ltd., a company that provided writing and editorial support for APEX COPD publications.Peer reviewedPostprin

    Antimony soil-plant transfer

    No full text
    Plants growing in antimony-contaminated soils provide a potentially important exposure route for humans and animals to antimony via food contamination and grazing feed [1-3]. Antimony can accumulate in plant tissues [4, 5] and may be toxic to plants [6, 7]. Although background antimony concentrations in soil are typically -1 [8, 9], much higher concentrations in soils contaminated by sources such as mining and smelting can result in extremely high concentrations detected in plants growing in these soils [10-12]. For example, up to 11,800 mg kg-1 antimony has been reported in soils contaminated by waste rock surrounding one of the world's largest antimony mines, the Xikuangshan (XKS) mine in China [13], and numerous studies report on uptake and high concentrations in the plants (up to 4,029 mg kg-1), including crops, growing in the contaminated soils [12, 14, 15]. Nevertheless, plant concentrations and toxicity depend on a range of environmental factors that control antimony speciation, solution concentrations, soil to root transfer, plant uptake, and translocation

    Dividing and conquering the fastest-growing genus: Towards a natural sectional classification of the mega-diverse genus Begonia (Begoniaceae)

    No full text
    The pantropical genus Begonia is the sixth-largest genus of flowering plants, including 1870 species. The sections of Begonia are used frequently as analogues to genera in other families but, despite their taxonomic utility, few of the current sections have been examined in the light of molecular phylogenetic analyses. We present herein the largest, most representative phylogeny of Begonia published to date and a subsequent provisional sectional classification of the genus. We utilised three plastid markers for 574 species and 809 accessions of Begonia and used Hillebrandia as an outgroup to produce a dated phylogeny. The relationships between some species and sections are poorly resolved, but many sections and deeper nodes receive strong support. We recognise 70 sections of Begonia including 5 new sections: Astrothrix, Ephemera, Jackia, Kollmannia, and Stellandrae; 4 sections are reinstated from synonymy: Australes, Exalabegonia, Latistigma and Pereira; and 5 sections are newly synonymised. The new sectional classification is discussed with reference to identifying characters and previous classifications

    Dividing and conquering the fastest-growing genus: Towards a natural sectional classification of the mega-diverse genus Begonia (Begoniaceae)

    No full text
    The pantropical genus Begonia is the sixth-largest genus of flowering plants, including 1870 species. The sections of Begonia are used frequently as analogues to genera in other families but, despite their taxonomic utility, few of the current sections have been examined in the light of molecular phylogenetic analyses. We present herein the largest, most representative phylogeny of Begonia published to date and a subsequent provisional sectional classification of the genus. We utilised three plastid markers for 574 species and 809 accessions of Begonia and used Hillebrandia as an outgroup to produce a dated phylogeny. The relationships between some species and sections are poorly resolved, but many sections and deeper nodes receive strong support. We recognise 70 sections of Begonia including 5 new sections: Astrothrix, Ephemera, Jackia, Kollmannia, and Stellandrae; 4 sections are reinstated from synonymy: Australes, Exalabegonia, Latistigma and Pereira; and 5 sections are newly synonymised. The new sectional classification is discussed with reference to identifying characters and previous classifications
    corecore